Performance Analysis of Adaptive Resource Clustering in Grid
نویسندگان
چکیده
A grid provides abundant resources to the grid users. Task scheduling is a fundamental issue in grid computing. The objective of task scheduling is to allocate required resources to user request. Grid application that requires fast task execution does not perform well since tasks are assigned according to node availability not according to node computing capability. In this paper, we discussed adaptive resource clustering architecture that virtually grouping same computing capability nodes based on the number and resource requirement of tasks so that task execution becomes faster. In this paper, we evaluate the performance of adaptive clustering with static and without clustering of resources and task are schedule by Max-Min, MinMin, FCFS heuristics and simulation results shows that our architecture outperforms in makespan and success execution rate of tasks.
منابع مشابه
Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملHydrograph Estimation based on Various Components of Rainfall Using Adaptive Neuro-Fuzzy Inference System in Kasilian Watershed
Flood hydrograph preparation and estimation are considered a comprehensive information for soil and water managers and planners. While it is not simply possible preparing it for all watersheds. Therfore suitable flood hydrograph estimation and modeling seems to be necessary using available rainfall data. The study area is located in Kasilian representative watershed in Mazandaran province compr...
متن کاملMulti-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study
Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...
متن کاملAdaptive Sliding Mode Control of Multi-DG, Multi-Bus Grid-Connected Microgrid
This paper proposes a new adaptive controller for the robust control of a grid-connected multi-DG microgrid (MG) with the main aim of output active power and reactive power regulation as well as busbar voltage regulation of DGs. In addition, this paper proposes a simple systematic method for the dynamic analysis including the shunt and series faults that are assumed to occur in the MG. The pres...
متن کاملDeveloping new Adaptive Neuro-Fuzzy Inference System models to predict granular soil groutability
Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM) and Fuzzy C-means clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data from related available in litterature was used for the tests. Several parameters were taken into account in the proposed models: water:ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011